Received: December 13, 1989; accepted: March 12, 1990

NEW SYNTHESIS OF IF50

C.J. SCHACK AND K.O. CHRISTE*

Rocketdyne, A Division of Rockwell International, Canoga Park, CA 91303 (USA)

SUMMARY

Phosphorus trifluoride oxide readily replaces two fluorine ligands in IF₇ for a doubly bonded oxygen atom, thereby providing a new and convenient synthesis for IF₅O. Attempts to extend this method to the syntheses of either IF₃O₂ or IFO₃ were unsuccessful due to competing deoxygenation reactions of the iodine oxyfluoride precursors. Furthermore, PF₃O does not undergo fluorine-oxygen exchange with the NF₄⁺ cation.

INTRODUCTION

Recent work from our laboratory on fluorine-oxygen exchange reactions has shown that the nitrate ion is an excellent reagent for replacing two fluorine ligands by one doubly bonded oxygen atom in compounds such as BrF_5 [1, 2], XeF_6 [3], $XeOF_4$ [4], ClF_5 , ClF_3 and ClF [5], and IF_5 [6]. However, IF_7 did not yield IF_5O but resulted in the formation of IF_5 and half a mol of oxygen [6]. This was unexpected since IF_7 is known to undergo fluorine-oxygen exchange with either silica at 100°C [7] or Cab-O–Sil [8], Pyrex [9, 10], I_2O_5 [10] or small amounts of water [9, 10] at ambient temperature. Recently, it was shown that PF_3O is also an effective reagent for accomplishing fluorine-oxygen exchange in XeF_6 , UF_6 , ClF_5 , and BrF_5 [11]. It was, therefore, interesting to examine whether IF_7 and PF_3O undergo a fluorineoxygen exchange reaction or are subject to deoxygenation as in the IF_7 -NO₃⁻ case [6].

EXPERIMENTAL

Volatile materials were handled in a stainless steel vacuum line equipped with Teflon-FEP U-traps, stainless steel bellows-seal valves, and a Heise Bourdon tube-type gauge [12].

0022-1139/90/\$3.50

All reactions were carried out either in stainless steel containers or sapphire tubes. Infrared spectra were recorded on a Perkin Elmer Model 283 spectrometer using a 5-cm path length Teflon cell with AgCl windows for gases, and AgCl disks, pressed in an Econo press (Barnes Engineering Co.), for solids. Raman spectra were recorded on a Spex Model 1403 spectrophotometer using the 647.1-nm exciting line of a Kr ion laser. Literature methods were used for the syntheses of IF₇ [8], PF₃O [13], IF₃O₂ [14], and NF₄BF₄ [15].

Synthesis of IF50

A 30 ml stainless steel cylinder was passivated first with ClF₃ and then with PF₃O. After evacuation and cooling to -196°C, the cylinder was loaded successively with IF₇ (1.04 mmol) and PF₃O (1.10 mmol) and allowed to warm to room temperature. After five days the volatile products were removed and separated by fractional condensation in U-traps cooled to -78, -126, and -196°C. Only a small amount of non-condensable gas was observed, presumably O₂. The -196°C trap contained PF₅ (1.03 mmol) and PF₃O (0.07 mmol). The -78°C trap contained IF₅ (0.08 mmol), while the -126°C trap contained IF₅O (0.91 mmol, 88% yield based on IF₇).

RESULTS AND DISCUSSION

Iodine heptafluoride and PF_3O readily undergo a fluorine-oxygen exchange reaction according to:

 $IF_7 + PF_3O \rightarrow IF_5O + PF_5$

The reaction proceeds at room temperature and produces IF₅O in a yield of about 90%. In addition to IF₅O, small amounts of IF₅ and oxygen are formed due to some decomposition of IF₅O. Use of an excess of PF₃O does not result in further fluorine-oxygen exchange and the formation of either IF₃O₂ or FIO₃. This was confirmed by an examination of the IF₅O-PF₃O and the IF₃O₂-PF₃O systems. At room temperature, no fluorine-oxygen exchange was observed, while at elevated temperatures the iodine oxyfluoride starting materials underwent deoxygenation rather than fluorine-oxygen exchange with PF₃O.

Attempts to achieve fluorine-oxygen exchange in NF₄BF₄ with PF₃O did not produce any NF₃O. Instead, the NF₄BF₄ fluorinated the PF₃O to PF₅ and oxygen, followed by a partial displacement reaction of BF₄⁻ by PF₅.

 $NF_4BF_4 + PF_3O \rightarrow NF_3 + BF_3 + PF_5 + 0.5O_2$ $NF_4BF_4 + PF_5 \rightarrow NF_4PF_6 + BF_3$

This result is not surprising in view of the previous findings that (+V) nitrogen exhibits a maximum coordination number of four toward fluorine [16] and PF₅ can displace BF₃ from NF₄BF₄ [17].

ACKNOWLEDGMENTS

The authors wish to thank Mr. R.D. Wilson and Dr. W.W. Wilson for their help, Dr. G.J. Schrobilgen for a sample of IF_3O_2 and the U.S. Army Research Office for financial support of the work at Rocketdyne.

REFERENCES

- 1 W. W. Wilson and K. O. Christe, Inorg. Chem., <u>26</u> (1987) 916.
- 2 W. W. Wilson and K. O. Christe, Inorg. Chem., 26 (1987) 1573.
- 3 K. O. Christe and W. W. Wilson, Inorg. Chem., 27 (1988) 1296.
- 4 K. O. Christe and W. W. Wilson, Inorg. Chem., 27 (1988) 3763.
- 5 K. O. Christe and W. W. Wilson, Inorg. Chem., 28 (1989) 675.
- 6 K. O. Christe, W. W. Wilson and R. D. Wilson, Inorg. Chem., 28 (1989) 904.
- 7 R. J. Gillespie and J. W. Quail, Proc. Chem. Soc., (1963) 278.
- 8 C. J. Schack, D. Pilipovich, S. N. Cohz, and D. F. Sheehan, J. Phys. Chem., <u>72</u> (1968) 4697.
- 9 L. G. Alexakos, C. D. Cornwell and S. B. Pierce, Proc. Chem. Soc., (1963) 341.
- 10 N. Bartlett and L. E. Levchuk, Proc. Chem. Soc., (1963) 342.
- 11 S. A. Kinkead and J. B. Nielsen, Paper 47 presented at the ACS Ninth Winter Fluorine Conference, St. Petersburg, FL (February, 1989).
- 12 K. O. Christe, R. D. Wilson, and C. J. Schack, Inorg. Synth., 24 (1986) 3.
- W. Kwasnik in 'Handbook of Preparative Inorganic Chemistry,' 1 (1963) 193 (G. Brauer, Editor).
- 14 R. G. Syvret, Ph.D. Thesis, McMaster University (1987).
- 15 K. O. Christe, W. W. Wilson, C. J. Schack and R. D. Wilson, Inorg. Synth., 24 (1986) 39.
- 16 K. O. Christe, W. W. Wilson, G. J. Schrobilgen, R. V. Chirakal and G. A. Olah, Inorg.. Chem., <u>27</u> (1988) 879.
- 17 K. O. Christe, C. J. Schack and R. D. Wilson, Inorg. Chem., 15 (1976) 1275.